#### Week #15 – Rank Correlation Coefficient

Rank correlation is a method of finding the degree of association between two variables. The calculation for the rank correlation coefficient the same as that for the Pearson correlation coefficient, but is calculated using the ranks of the observations and not their numerical values. This…

Comments Off on Week #15 – Rank Correlation Coefficient

#### Week #14 – Manifest Variable

In latent variable models, a manifest variable (or indicator) is an observable variable - i.e. a variable that can be measured directly. A manifest variable can be continuous or categorical. The opposite concept is the latent variable.

Comments Off on Week #14 – Manifest Variable

#### Week #13 – Fisher´s Exact Test

Fisher´s exact test is the first (historically) permutation test. It is used with two samples of binary data, and tests the null hypothesis that the two samples are drawn from populations with equal but unknown proportions of "successes" (e.g. proportion of patients recovered without complications…

Comments Off on Week #13 – Fisher´s Exact Test

#### Week #12 – Homoscedasticity

Homoscedasticity generally means equal variation of data, e.g. equal variance.

Comments Off on Week #12 – Homoscedasticity

#### Week #11 – Posterior Probability

Posterior probability is a revised probability that takes into account new available information. For example, let there be two urns, urn A having 5 black balls and 10 red balls and urn B having 10 black balls and 5 red balls. Now if an urn…

Comments Off on Week #11 – Posterior Probability