HYPERPARAMETER

Hyperparameter is used in machine learning, where it refers, loosely speaking, to user-set parameters, and in Bayesian statistics, to refer to parameters of the prior distribution.

0 Comments

SAMPLE

Why sample? A while ago, sample would not have been a candidate for Word of the Week, its meaning being pretty obvious to anyone with a passing acquaintance with statistics. I select it today because of some output I saw from a decision tree in Python.

0 Comments

SPLINE

 

The easiest way to think of a spline is to first think of linear regression - a single linear relationship between an outcome variable and various predictor variables. 

0 Comments

NLP

To some, NLP = natural language processing, a form of text analytics arising from the field of computational linguistics.

0 Comments

OVERFIT

As applied to statistical models - "overfit" means the model is too accurate, and fitting noise, not signal. For example, the complex polynomial curve in the figure fits the data with no error, but you would not want to rely on it to predict accurately for new data:

0 Comments

Quotes about Data Science

“The goal is to turn data into information, and information into insight.” – Carly Fiorina, former CEO, Hewlett-Packard Co. Speech given at Oracle OpenWorld “Data is the new science. Big data holds the answers.” – Pat Gelsinger, CEO, EMC, Big Bets on Big Data, Forbes“Hiding within those…

0 Comments

Week #17 – Corpus

A corpus is a body of documents to be used in a text mining task.  Some corpuses are standard public collections of documents that are commonly used to benchmark and tune new text mining algorithms.  More typically, the corpus is a body of documents for…

0 Comments

Week #2 – Casual Modeling

Causal modeling is aimed at advancing reasonable hypotheses about underlying causal relationships between the dependent and independent variables. Consider for example a simple linear model: y = a0 + a1 x1 + a2 x2 + e where y is the dependent variable, x1 and x2…

0 Comments

Week #10 – Arm

In an experiment, an arm is a treatment protocol - for example, drug A, or placebo.   In medical trials, an arm corresponds to a patient group receiving a specified therapy.  The term is also relevant for bandit algorithms for web testing, where an arm consists…

0 Comments

Week #9 – Sparse Matrix

A sparse matrix typically refers to a very large matrix of variables (features) and records (cases) in which most cells are empty or 0-valued.  An example might be a binary matrix used to power web searches - columns representing search terms and rows representing searches,…

0 Comments

Week #8 – Homonyms department: Sample

We continue our effort to shed light on potentially confusing usage of terms in the different data science communities. In statistics, a sample is a collection of observations or records.  It is often, but not always, randomly drawn.  In matrix form, the rows are records…

0 Comments

Week #7 – Homonyms department: Normalization

With this entry, we inaugurate a new effort to shed light on potentially confusing usage of terms in the different data science communities. In statistics and machine learning, normalization of variables means to subtract the mean and divide by the standard deviation.  When there are…

0 Comments

Week #32 – False Discovery Rate

A "discovery" is a hypothesis test that yields a statistically significant result. The false discovery rate is the proportion of discoveries that are, in reality, not significant (a Type-I error). The true false discovery rate is not known, since the true state of nature is not known (if it were, there would be no need for statistical inference).

0 Comments

Week #23 – Netflix Contest

The 2006 Netflix Contest has come to convey the idea of crowdsourced predictive modeling, in which a dataset and a prediction challenge are made publicly available.  Individuals and teams then compete to develop the best performing model.

0 Comments

Week #20 – R

This week's word is actually a letter.  R is a statistical computing and programming language and program, a derivative of the commercial S-PLUS program, which, in turn, was an offshoot of S from Bell Labs.

0 Comments

Course Spotlight: The Text Analytics Sequence

Text analytics or text mining is the natural extension of predictive analytics, and Statistics.com's text analytics program starts Feb. 6. Text analytics is now ubiquitous and yields insight in: Marketing: Voice of the customer, social media analysis, churn analysis, market research, survey analysis Business: Competitive…

0 Comments

College Credit Recommendation

Statistics.com Receives College Recommendation from the American Council on Education (ACE) College Credit Recommendation for Online Data Science Courses from The Institute for Statistics Education at Statistics.com LLC The American Council on Education's College Credit Recommendation Service (ACE CREDIT) has evaluated and recommended college credit…

0 Comments

Word #39 – Censoring

Censoring in time-series data occurs when some event causes subjects to cease producing data for reasons beyond the control of the investigator, or for reasons external to the issue being studied.

0 Comments

Work #32 – Predictive modeling

Predictive modeling is the process of using a statistical or machine learning model to predict the value of a target variable (e.g. default or no-default) on the basis of a series of predictor variables (e.g. income, house value, outstanding debt, etc.).

0 Comments

Needle in a Haystack

What's the probability that the NSA examined the metadata for your phone number in 2013? According to John Inglis, Deputy Director at the NSA, it's about 0.00001, or 1 in 100,000. A surprisingly small number, given what we've all been reading in the media about…

0 Comments

Week #51 – Type 1 error

In a test of significance (also called a hypothesis test), Type I error is the error of rejecting the null hypothesis when it is true -- of saying an effect or event is statistically significant when it is not.

0 Comments

Personality regions

There are Red States and Blue States. The three blue states of the Pacific coast constitute the Left Coast. For Colin Woodward, Yankeedom comprises both New England and the Great Lakes. If you're into accessories, there's the Bible Belt, the Rust Belt, and the Stroke…

0 Comments

Week #49 – Data partitioning

Data partitioning in data mining is the division of the whole data available into two or three non-overlapping sets: the training set (used to fit the model), the validation set (used to compared models), and the test set (used to predict performance on new data).

0 Comments

Statistics.com Partners With CrowdANALYTIX to Offer New Online Course With Crowdsource Contest As Project

Crowdsourcing, using the power of the crowd to solve problems, has been used for many functions and tasks, including predictive modeling (like the 2009 Netflix Contest). Typically, problems are broadcast to an unknown group of statistical modelers on the Internet, and solutions are sought. Every…

0 Comments

Week #32 – CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a method for building classification trees and regression trees from a training sample comprising already-classified objects.

0 Comments

Week # 29 – Training data

Also called the training sample, training set, calibration sample.  The context is predictive modeling (also called supervised data mining) -  where you have data with multiple predictor variables and a single known outcome or target variable.

0 Comments

Churn Trigger

Last year's popular story out of the Predictive Analytics World conference series was Andrew Pole's presentation of Target's methodology for predicting which customers were pregnant.

0 Comments

Statistics for Future Presidents

Statistics for Future Presidents - Steve Pierson, Director of Science Policy at ASA wrote interesting blog wondering how statistics for future presidents (or policymakers more generally) would compare with the recommended statistical skills/concepts for others. Take a look and let him know!

0 Comments

The Data Scientist

The story of the prospective Facebook IPO, and prior IPO's from LinkedIn, Pandora, and Groupon all involve "data scientists".  Read an interview with Monica Rogati - Senior Data Scientist at LinkedIn to see the connection.

0 Comments

Coffee causes cancer?

"Any claim coming from an observational study is most likely to be wrong." Thus begins "Deming, data and observational studies," just published in "Significance Magazine" (Sept. 2011).

0 Comments