Skip to content
Statistics logo
  • Courses
    • See All Courses
    • Calendar
    • Intro stats for college credit
    • Faculty
    • Group training
    • Credit & Credentialing
    • Teach With Us
  • Programs/Degrees
    • Certificates
      • Analytics for Data Science
      • Biostatistics
      • Programming For Data Science – Python (Experienced)
      • Programming For Data Science – Python (Novice)
      • Programming For Data Science – R (Experienced)
      • Programming For Data Science – R (Novice)
      • Social Science
    • Skillsets
      • Bayesian Statistics
      • Business Analytics
      • Healthcare Analytics
      • Marketing Analytics
      • Operations Research
      • Predictive Analytics
      • Python Analytics
      • R Programming Analytics
      • Rasch & IRT
      • Spatial Statistics
      • Survey Analysis
      • Text Mining Analytics
    • Undergraduate Degree Programs
    • Graduate Degree Programs
  • Partnerships
    • Higher Education
    • Enterprise
  • Resources
    • About Us
    • Blog
    • Word Of The Week
    • Newsletter signup
    • Glossary
    • Statistical Symbols
    • FAQs & Knowledge Base
    • Testimonials
    • Test Yourself
  • Student Login

Home Blog Churn

Churn

Churn is a term used in marketing to refer to the departure, over time, of customers.  Subscribers to a service may remain for a long time (the ideal customer), or they may leave for a variety of reasons (switching to a competitor, dissatisfaction, credit card expires, customer moves, etc.).  A customer who leaves, for whatever reason, "churns."

The result is a predictable decay of a given set of customers over time, in the same way that uranium isotopes decay. There are three statistical analysis perspectives on this customer list decay.

  1. You can focus on a set time period for decay, say 6 months, and ask “what is the probability that a customer acquired 6 months ago will leave in the next month.”  You could train a static statistical model on the basis of training data, where each customer is classified 0/1 as to whether they left in the 7th month.

  2. You can use basic survival analysis to understand the general survival rate over time of a typical customer, to use as a parameter in business planning.  This would yield a function that you could use to determine risk for the typical customer at any given time.

  1. You can add predictor variables to the survival model to model churn risk not just for a typical customer, but for a customer who fits a particular profile.  This would allow more targeted interventions for a given customer to lower the probability of churning.

Subscribe to the Blog

You have Successfully Subscribed!

By submitting your information, you agree to receive email communications from statistics.com. All information submitted is subject to our privacy policy. You may opt out of receiving communications at any time.

Categories

Recent Posts

  • Table Test
  • Oct 19: Data Literacy – The Chainsaw Case
  • Data Literacy – The Chainsaw Case

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

Our Links

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team
Menu
  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

Social Networks

Linkedin-in Twitter Facebook-f Youtube

Contact

The Institute for Statistics Education
2107 Wilson Blvd
Suite 850 
Arlington, VA 22201
(571) 281-8817

ourcourses@statistics.com

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

© Copyright 2022 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept