Skip to content

Explore Courses | Elder Research | Contact | LMS Login

Statistics.com
  • Curriculum
    • Curriculum
    • About Us
    • Testimonials
    • Management Team
    • Faculty Search
    • Teach With Us
    • Credit & Credentialing
  • Courses
    • Explore Courses
    • Course Calendar
    • About Our Courses
    • Course Tour
    • Test Yourself!
  • Mastery Series
    • Mastery Series Program
    • Bayesian Statistics
    • Business Analytics
    • Healthcare Analytics
    • Marketing Analytics
    • Operations Research
    • Predictive Analytics
    • Python for Analytics
    • R Programming
    • Rasch & IRT
    • Spatial Statistics
    • Statistical Modeling
    • Survey Statistics
    • Text Mining and Analytics
  • Certificates
    • Certificate Program
    • Analytics for Data Science
    • Biostatistics
    • Programming for Data Science – R (Novice)
    • Programming for Data Science – R (Experienced)
    • Programming for Data Science – Python (Novice)
    • Programming for Data Science – Python (Experienced)
    • Social Science
  • Degrees
    • Degree Programs
    • Computational Data Analytics Certificate of Graduate Study from Rowan University
    • Health Data Management Certificate of Graduate Study from Rowan University
    • Data Science Analytics Master’s Degree from Thomas Edison State University (TESU)
    • Data Science Analytics Bachelor’s Degree – TESU
    • Mathematics with Predictive Modeling Emphasis BS from Bellevue University
  • Enterprise
    • Organizations
    • Higher Education
  • Resources
    • Blog
    • FAQs & Knowledge Base
    • Glossary
    • Site Map
    • Statistical Symbols
    • Weekly Brief Newsletter Signup
    • Word of the Week
Menu Close
  • Curriculum
    • Curriculum
    • About Us
    • Testimonials
    • Management Team
    • Faculty Search
    • Teach With Us
    • Credit & Credentialing
  • Courses
    • Explore Courses
    • Course Calendar
    • About Our Courses
    • Course Tour
    • Test Yourself!
  • Mastery Series
    • Mastery Series Program
    • Bayesian Statistics
    • Business Analytics
    • Healthcare Analytics
    • Marketing Analytics
    • Operations Research
    • Predictive Analytics
    • Python for Analytics
    • R Programming
    • Rasch & IRT
    • Spatial Statistics
    • Statistical Modeling
    • Survey Statistics
    • Text Mining and Analytics
  • Certificates
    • Certificate Program
    • Analytics for Data Science
    • Biostatistics
    • Programming for Data Science – R (Novice)
    • Programming for Data Science – R (Experienced)
    • Programming for Data Science – Python (Novice)
    • Programming for Data Science – Python (Experienced)
    • Social Science
  • Degrees
    • Degree Programs
    • Computational Data Analytics Certificate of Graduate Study from Rowan University
    • Health Data Management Certificate of Graduate Study from Rowan University
    • Data Science Analytics Master’s Degree from Thomas Edison State University (TESU)
    • Data Science Analytics Bachelor’s Degree – TESU
    • Mathematics with Predictive Modeling Emphasis BS from Bellevue University
  • Enterprise
    • Organizations
    • Higher Education
  • Resources
    • Blog
    • FAQs & Knowledge Base
    • Glossary
    • Site Map
    • Statistical Symbols
    • Weekly Brief Newsletter Signup
    • Word of the Week

Blog

Home » Blog » Blog Type » Word of the Week » Conditional Probability Word of the Week

Conditional Probability Word of the Week

  • December 14, 2018
  • , 9:23 pm
QUESTION:  The rate of residential insurance fraud is 10% (one out of ten claims is fraudulent).  A consultant has proposed a machine learning system to review claims and classify them as fraud or no-fraud.  The system is 90% effective in detecting the fraudulent claims, but only 80% effective in correctly classifying the non-fraud claims (it mistakenly labels one in five as "fraud").  If the system classifies a claim as fraudulent, what is the probability that it really is fraudulent?

 

SOLUTION

 

This is a problem in conditional probability. (It?s also a Bayesian problem, but applying the formula in Bayes Rule only helps to obscure what?s going on.)  Consider 100 claims. 10 will be fraudulent, and the system will correctly label 9 of them as “fraud.” 90 claims will be OK, but the system will incorrectly classify 18 (20%) as “fraud.”  So a total of 27 claims have been labeled as fraudulent, but only 9 of them, 33%, are actually fraudulent. Translating into probability terms:

Given that a claim has been labeled as fraudulent, the probability is 0.33 that it is actually fraudulent.

 

Or, in symbols:

 

P(fraud|”fraud” label) = 0.33   (the vertical bar means “given that.”)

 
 

Subscribe to the Blog

You have Successfully Subscribed!

Categories

Recent Posts

  • Dec 14: Statistics in Practice December 11, 2020
  • PUZZLE OF THE WEEK – School in the Pandemic December 11, 2020
  • From Kaggle to Cancel: The Culture of AI December 11, 2020

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

Latest Blogs

  • Dec 14: Statistics in Practice
    December 11, 2020/
    0 Comments
  • PUZZLE OF THE WEEK – School in the Pandemic
    December 11, 2020/
    0 Comments
  • From Kaggle to Cancel: The Culture of AI
    December 11, 2020/
    0 Comments

Social Networks

Linkedin
Twitter
Facebook
Youtube

Contact

The Institute for Statistics Education
4075 Wilson Blvd, 8th Floor
Arlington, VA 22203
(571) 281-8817

ourcourses@statistics.com

© Copyright 2021 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept