Skip to content

Reliability

Reliability:

Reliability characterises the capability of a device, unit, procedure to perform without fault. Reliability is quantified in terms of probability. This probability is related either to an elementary act or to an interval of time or another continuous variable. Because the probability of failure is normally a small fraction, the reverse ratio rounded to integers is usually used.

For example, reliability of computer hard drives may be quantified as the probability of failure in one start/stop cycle. But, in reality, the reverse value is used – the average number of start/stop cycles per one failure (in usual hard drives this value is about 30,000…50,000). Another example is reliability of commercial jet-flights, which is normally related to the number of takeoffs/landings. In situations of this sort, the probability of failure is related to one elementary act (e.g. one hard drive failure, one plane crash).

On the other hand, in many real-world situations, the probability of failure is related to an interval of time or another continuous variable. For example, the reliability of electric bulbs (and many other devices) my be expressed as the probability of failure per one hour of operation. Reliability of the transmission in a car may be expressed as probability of failure per one mile. Normally such probability is presented in reverse units – time (or other quantity) of faultless operation per one failure, e.g 1,000 hours/failure for a bulb, 10,000 miles/failure for car transmission.

In statistical reliability theory, an important role is played by the Poisson process , which is a good model for failure events in time (or other continuous quantity, like distance). In such cases, the parameter Math image characterises the incidence of failures, and the reverse value Math image characterises the average operation time per one failure.

In surveys and tests, e.g. in psychometrics , the term “reliability” has a somewhat different meaning. See Reliability (in Survey Analysis) .

Browse Other Glossary Entries

Test Yourself

Planning on taking an introductory statistics course, but not sure if you need to start at the beginning? Review the course description for each of our introductory statistics courses and estimate which best matches your level, then take the self test for that course. If you get all or almost all the questions correct, move on and take the next test.

Data Analytics

Considering becoming adata scientist, customer analyst or our data science certificate program?

Analytics Quiz

Advanced Statistics Quiz

Statistics Quiz

Statistics

Looking at statistics for graduate programs or to enhance your foundational knowledge?

Statistics 1 Quiz

Regression Quiz

Regression Quiz

Biostatistics

Entering the biostatistics field? Test your skill here.

Biostatistics Quiz

Advanced Statistics Quiz

Statistics 2 Quiz

Stay Informed

Our Blog

Read up on our latest blogs

Certificates

Learn about our certificate programs

Courses

Find the right course for you

Contact Us

We'd love to answer your questions

Our mentors and academic advisors are standing by to help guide you towards the courses or program that makes the most sense for you and your goals.

300 W Main St STE 301, Charlottesville, VA 22903

(434) 973-7673

ourcourses@statistics.com

By submitting your information, you agree to receive email communications from Statistics.com. All information submitted is subject to our privacy policy. You may opt out of receiving communications at any time.