Skip to content

Explore Courses | Elder Research | Contact | LMS Login

Statistics.com Logo
  • Courses
    • See All Courses
    • Calendar
    • Intro stats for college credit
    • Faculty
    • Group training
    • Credit & Credentialing
    • Teach With Us
  • Programs/Degrees
    • Certificates
      • Analytics for Data Science
      • Biostatistics
      • Programming For Data Science – Python (Experienced)
      • Programming For Data Science – Python (Novice)
      • Programming For Data Science – R (Experienced)
      • Programming For Data Science – R (Novice)
      • Social Science
    • Undergraduate Degree Programs
    • Graduate Degree Programs
    • Massive Open Online Courses (MOOC)
  • Partnerships
    • Higher Education
    • Enterprise
  • Resources
    • About Us
    • Blog
    • Word Of The Week
    • News and Announcements
    • Newsletter signup
    • Glossary
    • Statistical Symbols
    • FAQs & Knowledge Base
    • Testimonials
    • Test Yourself
Menu
  • Courses
    • See All Courses
    • Calendar
    • Intro stats for college credit
    • Faculty
    • Group training
    • Credit & Credentialing
    • Teach With Us
  • Programs/Degrees
    • Certificates
      • Analytics for Data Science
      • Biostatistics
      • Programming For Data Science – Python (Experienced)
      • Programming For Data Science – Python (Novice)
      • Programming For Data Science – R (Experienced)
      • Programming For Data Science – R (Novice)
      • Social Science
    • Undergraduate Degree Programs
    • Graduate Degree Programs
    • Massive Open Online Courses (MOOC)
  • Partnerships
    • Higher Education
    • Enterprise
  • Resources
    • About Us
    • Blog
    • Word Of The Week
    • News and Announcements
    • Newsletter signup
    • Glossary
    • Statistical Symbols
    • FAQs & Knowledge Base
    • Testimonials
    • Test Yourself
Student Login

Reliability

Reliability

Reliability:

Reliability characterises the capability of a device, unit, procedure to perform without fault. Reliability is quantified in terms of probability. This probability is related either to an elementary act or to an interval of time or another continuous variable. Because the probability of failure is normally a small fraction, the reverse ratio rounded to integers is usually used.

For example, reliability of computer hard drives may be quantified as the probability of failure in one start/stop cycle. But, in reality, the reverse value is used - the average number of start/stop cycles per one failure (in usual hard drives this value is about 30,000...50,000). Another example is reliability of commercial jet-flights, which is normally related to the number of takeoffs/landings. In situations of this sort, the probability of failure is related to one elementary act (e.g. one hard drive failure, one plane crash).

On the other hand, in many real-world situations, the probability of failure is related to an interval of time or another continuous variable. For example, the reliability of electric bulbs (and many other devices) my be expressed as the probability of failure per one hour of operation. Reliability of the transmission in a car may be expressed as probability of failure per one mile. Normally such probability is presented in reverse units - time (or other quantity) of faultless operation per one failure, e.g 1,000 hours/failure for a bulb, 10,000 miles/failure for car transmission.

In statistical reliability theory, an important role is played by the Poisson process , which is a good model for failure events in time (or other continuous quantity, like distance). In such cases, the parameter Math image characterises the incidence of failures, and the reverse value Math image characterises the average operation time per one failure.

In surveys and tests, e.g. in psychometrics , the term "reliability" has a somewhat different meaning. See Reliability (in Survey Analysis) .

Browse Other Glossary Entries

Courses Using This Term

Loading...
Return to Glossary Search

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

 The Institute for Statistics Education is certified to operate by the State Council of Higher Education for Virginia (SCHEV)

Our Links

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team
  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

Social Networks

Facebook Twitter Youtube Linkedin

Contact

The Institute for Statistics Education
2107 Wilson Blvd
Suite 850 
Arlington, VA 22201
(571) 281-8817

ourcourses@statistics.com

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

© Copyright 2023 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept