Skip to content

Explore Courses | Elder Research | Contact | LMS Login

Statistics.com
  • Curriculum
    • Curriculum
    • About Us
    • Testimonials
    • Management Team
    • Faculty Search
    • Teach With Us
    • Credit & Credentialing
  • Courses
    • Explore Courses
    • Course Calendar
    • About Our Courses
    • Course Tour
    • Test Yourself!
  • Mastery Series
    • Mastery Series Program
    • Bayesian Statistics
    • Business Analytics
    • Healthcare Analytics
    • Marketing Analytics
    • Operations Research
    • Predictive Analytics
    • Python for Analytics
    • R Programming
    • Rasch & IRT
    • Spatial Statistics
    • Statistical Modeling
    • Survey Statistics
    • Text Mining and Analytics
  • Certificates
    • Certificate Program
    • Analytics for Data Science
    • Biostatistics
    • Programming for Data Science – R (Novice)
    • Programming for Data Science – R (Experienced)
    • Programming for Data Science – Python (Novice)
    • Programming for Data Science – Python (Experienced)
    • Social Science
  • Degrees
    • Degree Programs
    • Computational Data Analytics Certificate of Graduate Study from Rowan University
    • Health Data Management Certificate of Graduate Study from Rowan University
    • Data Science Analytics Master’s Degree from Thomas Edison State University (TESU)
    • Data Science Analytics Bachelor’s Degree – TESU
    • Mathematics with Predictive Modeling Emphasis BS from Bellevue University
  • Enterprise
    • Organizations
    • Higher Education
  • Resources
    • Blog
    • FAQs & Knowledge Base
    • Glossary
    • Site Map
    • Statistical Symbols
    • Weekly Brief Newsletter Signup
    • Word of the Week
Menu Close
  • Curriculum
    • Curriculum
    • About Us
    • Testimonials
    • Management Team
    • Faculty Search
    • Teach With Us
    • Credit & Credentialing
  • Courses
    • Explore Courses
    • Course Calendar
    • About Our Courses
    • Course Tour
    • Test Yourself!
  • Mastery Series
    • Mastery Series Program
    • Bayesian Statistics
    • Business Analytics
    • Healthcare Analytics
    • Marketing Analytics
    • Operations Research
    • Predictive Analytics
    • Python for Analytics
    • R Programming
    • Rasch & IRT
    • Spatial Statistics
    • Statistical Modeling
    • Survey Statistics
    • Text Mining and Analytics
  • Certificates
    • Certificate Program
    • Analytics for Data Science
    • Biostatistics
    • Programming for Data Science – R (Novice)
    • Programming for Data Science – R (Experienced)
    • Programming for Data Science – Python (Novice)
    • Programming for Data Science – Python (Experienced)
    • Social Science
  • Degrees
    • Degree Programs
    • Computational Data Analytics Certificate of Graduate Study from Rowan University
    • Health Data Management Certificate of Graduate Study from Rowan University
    • Data Science Analytics Master’s Degree from Thomas Edison State University (TESU)
    • Data Science Analytics Bachelor’s Degree – TESU
    • Mathematics with Predictive Modeling Emphasis BS from Bellevue University
  • Enterprise
    • Organizations
    • Higher Education
  • Resources
    • Blog
    • FAQs & Knowledge Base
    • Glossary
    • Site Map
    • Statistical Symbols
    • Weekly Brief Newsletter Signup
    • Word of the Week

Blog

Home » Blog » Blog Type » Word of the Week » Intervals (confidence, prediction and tolerance)

Intervals (confidence, prediction and tolerance)

  • August 13, 2019
  • , 7:01 am

All students of statistics encounter confidence intervals.  Confidence intervals tell you, roughly, the interval within which you can be, say, 95% confident that the true value of some sample statistic lies.  This is not the precise technical definition, but it is how people use the intervals. Confidence intervals to some statistic – say, the mean – calculated from a sample.  You would use a confidence interval to communicate the degree of uncertainty about some numerical estimate based on a sample.

 

A prediction interval, by contrast, is about an individual data point, not a sample statistic.  It expresses the degree of uncertainty around a specific prediction from a model, say a linear regression.  It is stated in the form “on average we can expect, say, 95% of our predicted values to fall in this interval.”  A prediction interval will, naturally, be much wider than a confidence interval (which gets narrower and narrower as you take bigger samples).

A tolerance interval, like a prediction interval, is also about a single data point.  It differs from a prediction interval in that we add a second quantification of uncertainty.  In a prediction interval, the statement 0.25 “on average we can expect, say, 95% of our predicted values to fall in this interval” implies that half the time more than 95% of the predictions will fall in the interval, and half the time fewer than 95% of the predictions will fall in the interval.  A tolerance interval quantifies that first part of the statement – i.e. it says, for example, “90% of the time 95% of the predictions will fall in the interval.” A tolerance interval in which that first uncertainty value is set to 50% is equivalent to a prediction interval.

A tolerance interval is not to be confused with manufacturing “tolerances,” which are statements about intervals within which we hope, expect or require some measurement to fall.  They may have some relation to prior data (i.e. the organization would not want them to be totally unrelated to reality), but they are not calculated from ongoing process data.

Tom Ryan’s comprehensive text Modern Engineering Statistics covers these intervals in some detail.  Tom developed and taught a number of courses with us at the Institute; he passed away in December, 2016.

Subscribe to the Blog

You have Successfully Subscribed!

Categories

Recent Posts

  • Dec 14: Statistics in Practice December 11, 2020
  • PUZZLE OF THE WEEK – School in the Pandemic December 11, 2020
  • From Kaggle to Cancel: The Culture of AI December 11, 2020

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

Latest Blogs

  • Dec 14: Statistics in Practice
    December 11, 2020/
    0 Comments
  • PUZZLE OF THE WEEK – School in the Pandemic
    December 11, 2020/
    0 Comments
  • From Kaggle to Cancel: The Culture of AI
    December 11, 2020/
    0 Comments

Social Networks

Linkedin
Twitter
Facebook
Youtube

Contact

The Institute for Statistics Education
4075 Wilson Blvd, 8th Floor
Arlington, VA 22203
(571) 281-8817

ourcourses@statistics.com

© Copyright 2021 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept