Skip to content

Explore Courses | Elder Research | Contact | LMS Login

Statistics.com
  • Curriculum
    • Curriculum
    • About Us
    • Testimonials
    • Management Team
    • Faculty Search
    • Teach With Us
    • Credit & Credentialing
  • Courses
    • Explore Courses
    • Course Calendar
    • About Our Courses
    • Course Tour
    • Test Yourself!
  • Mastery Series
    • Mastery Series Program
    • Bayesian Statistics
    • Business Analytics
    • Healthcare Analytics
    • Marketing Analytics
    • Operations Research
    • Predictive Analytics
    • Python for Analytics
    • R Programming
    • Rasch & IRT
    • Spatial Statistics
    • Statistical Modeling
    • Survey Statistics
    • Text Mining and Analytics
  • Certificates
    • Certificate Program
    • Analytics for Data Science
    • Biostatistics
    • Programming for Data Science – R (Novice)
    • Programming for Data Science – R (Experienced)
    • Programming for Data Science – Python (Novice)
    • Programming for Data Science – Python (Experienced)
    • Social Science
  • Degrees
    • Degree Programs
    • Computational Data Analytics Certificate of Graduate Study from Rowan University
    • Health Data Management Certificate of Graduate Study from Rowan University
    • Data Science Analytics Master’s Degree from Thomas Edison State University (TESU)
    • Data Science Analytics Bachelor’s Degree – TESU
    • Mathematics with Predictive Modeling Emphasis BS from Bellevue University
  • Enterprise
    • Organizations
    • Higher Education
  • Resources
    • Blog
    • FAQs & Knowledge Base
    • Glossary
    • Site Map
    • Statistical Symbols
    • Weekly Brief Newsletter Signup
    • Word of the Week
Menu Close
  • Curriculum
    • Curriculum
    • About Us
    • Testimonials
    • Management Team
    • Faculty Search
    • Teach With Us
    • Credit & Credentialing
  • Courses
    • Explore Courses
    • Course Calendar
    • About Our Courses
    • Course Tour
    • Test Yourself!
  • Mastery Series
    • Mastery Series Program
    • Bayesian Statistics
    • Business Analytics
    • Healthcare Analytics
    • Marketing Analytics
    • Operations Research
    • Predictive Analytics
    • Python for Analytics
    • R Programming
    • Rasch & IRT
    • Spatial Statistics
    • Statistical Modeling
    • Survey Statistics
    • Text Mining and Analytics
  • Certificates
    • Certificate Program
    • Analytics for Data Science
    • Biostatistics
    • Programming for Data Science – R (Novice)
    • Programming for Data Science – R (Experienced)
    • Programming for Data Science – Python (Novice)
    • Programming for Data Science – Python (Experienced)
    • Social Science
  • Degrees
    • Degree Programs
    • Computational Data Analytics Certificate of Graduate Study from Rowan University
    • Health Data Management Certificate of Graduate Study from Rowan University
    • Data Science Analytics Master’s Degree from Thomas Edison State University (TESU)
    • Data Science Analytics Bachelor’s Degree – TESU
    • Mathematics with Predictive Modeling Emphasis BS from Bellevue University
  • Enterprise
    • Organizations
    • Higher Education
  • Resources
    • Blog
    • FAQs & Knowledge Base
    • Glossary
    • Site Map
    • Statistical Symbols
    • Weekly Brief Newsletter Signup
    • Word of the Week

Blog

Home » Blog » Blog Type » Word of the Week » VARIANCE

VARIANCE

  • July 3, 2018
  • , 6:02 pm
It is 100 years since R A Fischer introduced the concept of "variance" (in his 1918 paper The Correlation Between Relatives on the Supposition of Mendelian Inheritance).

There is much that statistics has given us in the century that followed. Randomized clinical trials, and the means to analyze them moved medicine fully into the modern, science-based era. Statistical process control, and the associated doctrine of continuous improvement gave us the era of modern mass precision manufacturing. Big data analytics put information (if not wisdom) in the hands of anyone with an internet connection.

One area of an application based almost wholly on the modeling of variance is financial risk management. Understanding the distribution of possible future outcomes requires fitting known data to theoretical probability distributions that can serve to “generate” many Monte Carlo simulations of the returns on investment portfolios, insurance products and the like. Najeeb Taleb wrote of the importance of the “long tails” of these assumed probability distributions, for that’s where the unlikely events with huge impact lie in his book The Black Swan – the Impact of the Highly Improbable.

He chose the term black swan because these birds were initially assumed to be non-existent because people had not seen one. But, though rare, they do exist. In the same way, cataclysmic financial events do happen, even though they may not be seen in the data on which your probability distribution is based.

Making the convenient assumption of a normal distribution may underestimate the probability of extreme events; a probability distribution with fat and long tails may be more appropriate. Overconfidence in statistical models and nice, symmetric bell curves was one factor in the financial crash of 2008.

Modeling financial data is all about modeling events over time, so it also involves time series analysis. Putting it all together are Huybert Groenendaal and Greg Nolder, experts with considerable industry expertise, in

Financial Risk Modeling

They will answer your questions and comments on a regular basis throughout the course on a private discussion forum.

The software used is Model Risk, which operates in Excel. You’ll learn how to

  • Specify how a probability distribution is used in a financial model simulation
  • Characterize the different components of a time series (trend, seasonality, autocorrelation, volatility, mean reversion)
  • Fit various autoregressive models (ARCH, GARCH, more)
  • Use Markov chains in simulations
  • Work with multi-variate time series
  • Determine the correlation structure in time series
  • Fit appropriate probability distributions to historical data, and assess the fit (AIC, etc.)

The course takes place online at Statistics.com in a series of weekly lesson and assignments and requires about 15 hours/week. Participate at your own convenience; there are no set times when you are required to be online.

Subscribe to the Blog

You have Successfully Subscribed!

Categories

Recent Posts

  • Dec 14: Statistics in Practice December 11, 2020
  • PUZZLE OF THE WEEK – School in the Pandemic December 11, 2020
  • From Kaggle to Cancel: The Culture of AI December 11, 2020

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

Latest Blogs

  • Dec 14: Statistics in Practice
    December 11, 2020/
    0 Comments
  • PUZZLE OF THE WEEK – School in the Pandemic
    December 11, 2020/
    0 Comments
  • From Kaggle to Cancel: The Culture of AI
    December 11, 2020/
    0 Comments

Social Networks

Linkedin
Twitter
Facebook
Youtube

Contact

The Institute for Statistics Education
4075 Wilson Blvd, 8th Floor
Arlington, VA 22203
(571) 281-8817

ourcourses@statistics.com

© Copyright 2021 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept