Skip to content
Statistics logo
  • Courses
    • See All Courses
    • Calendar
    • Intro stats for college credit
    • Faculty
    • Group training
    • Credit & Credentialing
    • Teach With Us
  • Programs/Degrees
    • Certificates
      • Analytics for Data Science
      • Biostatistics
      • Programming For Data Science – Python (Experienced)
      • Programming For Data Science – Python (Novice)
      • Programming For Data Science – R (Experienced)
      • Programming For Data Science – R (Novice)
      • Social Science
    • Skillsets
      • Bayesian Statistics
      • Business Analytics
      • Healthcare Analytics
      • Marketing Analytics
      • Operations Research
      • Predictive Analytics
      • Python Analytics
      • R Programming Analytics
      • Rasch & IRT
      • Spatial Statistics
      • Survey Analysis
      • Text Mining Analytics
    • Undergraduate Degree Programs
    • Graduate Degree Programs
  • Partnerships
    • Higher Education
    • Enterprise
  • Resources
    • About Us
    • Blog
    • Word Of The Week
    • Newsletter signup
    • Glossary
    • Statistical Symbols
    • FAQs & Knowledge Base
    • Testimonials
    • Test Yourself
  • Student Login

Latent Variable Models

Latent Variable Models:

Latent variable models are a broad subclass of latent structure models . They postulate some relationship between the statistical properties of observable variables (or "manifest variables", or "indicators") and latent variables. A special kind of statistical analysis corresponds to each kind of the latent variable models.

According to Bartholomew and Knott [1], the latent variable models (and corresponding areas of statistical analysis) can be categorized according to the types of the manifest and latent variables:

 

Category Latent variable Manifest variable
Factor analysis Continuous Continuous
Latent profile analysis Categorical Continuous
Latent trait analysis Continuous Categorical
Latent class analysis Categorical Categorical

A central assumption in these models is the local independence postulate.

In latent variable models the distribution of continuous variables is often assumed to be normal, distribution of categorical variables - binomial or multinomial.

Latent variable models are covered in statistics.com´s online course Introduction to Structural Equation Modeling.

[1] Bartholomew, D.J., and Knott, M. (1999). Latent Variable Models and Factor Analysis. London: Arnold.

Browse Other Glossary Entries

Courses Using This Term

Return to Glossary Search

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

Our Links

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team
Menu
  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

Social Networks

Linkedin-in Twitter Facebook-f Youtube

Contact

The Institute for Statistics Education
2107 Wilson Blvd
Suite 850 
Arlington, VA 22201
(571) 281-8817

ourcourses@statistics.com

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

© Copyright 2022 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept