Skip to content

Explore Courses | Elder Research | Contact | LMS Login

Statistics.com Logo
  • Courses
    • See All Courses
    • Calendar
    • Intro stats for college credit
    • Faculty
    • Group training
    • Credit & Credentialing
    • Teach With Us
  • Programs/Degrees
    • Certificates
      • Analytics for Data Science
      • Biostatistics
      • Programming For Data Science – Python (Experienced)
      • Programming For Data Science – Python (Novice)
      • Programming For Data Science – R (Experienced)
      • Programming For Data Science – R (Novice)
      • Social Science
    • Undergraduate Degree Programs
    • Graduate Degree Programs
    • Massive Open Online Courses (MOOC)
  • Partnerships
    • Higher Education
    • Enterprise
  • Resources
    • About Us
    • Blog
    • Word Of The Week
    • News and Announcements
    • Newsletter signup
    • Glossary
    • Statistical Symbols
    • FAQs & Knowledge Base
    • Testimonials
    • Test Yourself
Menu
  • Courses
    • See All Courses
    • Calendar
    • Intro stats for college credit
    • Faculty
    • Group training
    • Credit & Credentialing
    • Teach With Us
  • Programs/Degrees
    • Certificates
      • Analytics for Data Science
      • Biostatistics
      • Programming For Data Science – Python (Experienced)
      • Programming For Data Science – Python (Novice)
      • Programming For Data Science – R (Experienced)
      • Programming For Data Science – R (Novice)
      • Social Science
    • Undergraduate Degree Programs
    • Graduate Degree Programs
    • Massive Open Online Courses (MOOC)
  • Partnerships
    • Higher Education
    • Enterprise
  • Resources
    • About Us
    • Blog
    • Word Of The Week
    • News and Announcements
    • Newsletter signup
    • Glossary
    • Statistical Symbols
    • FAQs & Knowledge Base
    • Testimonials
    • Test Yourself
Student Login

Latent Class Analysis (LCA)

Latent Class Analysis (LCA)

Latent Class Analysis (LCA):

Latent class analysis is concerned with deriving information about categorical latent variable s from observed values of categorical manifest variable s. In other words, LCA deals with fitting latent class models - a subclass of the latent variable models - to the observed data.

LCA is used for analysis of categorical data in biomedical, social science and market research.

Basic latent class models postulate the following relationship between distribution of the manifest variables and values of a categorical latent variable:

 

PY(y) =
Ã¥
x 
PYX(y | x) PX(x);   x = 1,...,t

where y=(y1,...,yL) is the response - the vector of values of L manifest categorical variables;

x is a value of the latent categorical variable;

PY(y) is the observed distribution of y;

PX(x) is the distribution of x;

PYX(y|x) is the distribution of y for given value of x.

The latent class models usually postulate local independence of the manifest variables (y1,...,yN) .

Outside the social research, the latent class models are often called "finite mixture models" - because the above described model represents distribution of all responses as a mixture of t conditional distributions of y : PYX(y|x), x=1,...t .

If X is a single categorical latent variable taking on t values, then ascribing particular values of X to observed responses y is equivalent to partitioning all responses into t classes. Therefore the corresponding branch of LCA is named "latent class cluster analysis". In contrast, in the "latent class factor analysis," x is considered as a vector of several categorical (usually - dichotomous) variables x=(x1,...,xN) , or "factors.

Browse Other Glossary Entries

Courses Using This Term

Loading...
Return to Glossary Search

About Statistics.com

Statistics.com offers academic and professional education in statistics, analytics, and data science at beginner, intermediate, and advanced levels of instruction. Statistics.com is a part of Elder Research, a data science consultancy with 25 years of experience in data analytics.

 The Institute for Statistics Education is certified to operate by the State Council of Higher Education for Virginia (SCHEV)

Our Links

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team
  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

Social Networks

Facebook Twitter Youtube Linkedin

Contact

The Institute for Statistics Education
2107 Wilson Blvd
Suite 850 
Arlington, VA 22201
(571) 281-8817

ourcourses@statistics.com

  • Contact Us
  • Site Map
  • Explore Courses
  • About Us
  • Management Team

© Copyright 2023 - Statistics.com, LLC | All Rights Reserved | Privacy Policy | Terms of Use

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Accept