Industry Spotlight: SAS is back

The big news from the SAS world this summer was the release, on May 28, of the SAS University Edition, which brings the effective price for a single user edition of SAS down from around $10,000 to $0. It does most of the things that…

Comments Off on Industry Spotlight: SAS is back

Twitter Sentiment vs. Survey Methods

Nobody expects Twitter feed sentiment analysis to give you unbiased results the way a well-designed survey will. A Pew Research study found that Twitter political opinion was, at times, much more liberal than that revealed by public opinion polls, while it was more conservative at…

Comments Off on Twitter Sentiment vs. Survey Methods

Internet of Things

Boston, August 3 2014: Bill Ruh, GE Software Center, says that the Internet of Things, 30 billion machines talking to one another, will dwarf the impact of the consumer internet. Speaking at the Joint Statistical Meetings today, Ruh predicted that the marriage of the IoT…

Comments Off on Internet of Things

Work #32 – Predictive modeling

Predictive modeling is the process of using a statistical or machine learning model to predict the value of a target variable (e.g. default or no-default) on the basis of a series of predictor variables (e.g. income, house value, outstanding debt, etc.).

Comments Off on Work #32 – Predictive modeling

Word #31 – Hold-out sample

A hold-out sample is a random sample from a data set that is withheld and not used in the model fitting process.  After the model...

Comments Off on Word #31 – Hold-out sample

Week #29 – Goodness-of-fit

Goodness-of-fit measures the difference between an observed frequency distribution and a theoretical probability distribution which

Comments Off on Week #29 – Goodness-of-fit

Week #28 – Geometric Mean

The geometric mean of n values is determined by multiplying all n values together, then taking the nth root of the product. It is useful in taking averages of ratios.

Comments Off on Week #28 – Geometric Mean

Week #27 – Hierarchical Linear Models

Hierarchical linear modeling is an approach to analysis of hierarchical (nested) data - i.e. data represented by categories, sub-categories, ..., individual units (e.g. school -> classroom -> student).

Comments Off on Week #27 – Hierarchical Linear Models

Week #21 – Error

Error is the deviation of an estimated quantity from its true value, or, more precisely,

Comments Off on Week #21 – Error

Week #19 – Regularization

Regularization refers to a wide variety of techniques used to bring structure to statistical models in the face of data size, complexity and sparseness.

Comments Off on Week #19 – Regularization

Week #18 – SQL

SQL stands for structured query language, a high level language for querying relational databases, extracting information.

Comments Off on Week #18 – SQL

Week #16 – MapReduce

MapReduce is a programming framework to distribute the computing load of very large data and problems to multiple computers.

Comments Off on Week #16 – MapReduce

Week #15 – Hadoop

As data processing requirements grew beyond the capacities of even large computers, distributed computing systems were developed to spread the load to multiple computers.

Comments Off on Week #15 – Hadoop

Week #13 – Data Product

A data product is a product or service whose value is derived from using algorithmic methods on data, and which in turn produces data to be used in the same product, or tangential data products.

Comments Off on Week #13 – Data Product

Week #12 – Dependent and Independent Variables

 

 

Statistical models normally specify how one set of variables, called dependent variables, functionally depend on another set of variables, called independent variables.

Comments Off on Week #12 – Dependent and Independent Variables

Week #11 – Distance

Statistical distance is a measure calculated between two records that are typically part of a larger dataset, where rows are records and columns are variables.  To calculate...

Comments Off on Week #11 – Distance

Week #10 – Decile Lift

In predictive modeling, the goal is to make predictions about outcomes on a case-by-case basis:  an insurance claim will be fraudulent or not, a tax return will be correct or in error, a subscriber...

Comments Off on Week #10 – Decile Lift

Week #9 – Decision Trees

In the machine learning community, a decision tree is a branching set of rules used to classify a record, or predict a continuous value for a record.  For example

Comments Off on Week #9 – Decision Trees

Week #8 – Feature Selection

In predictive modeling, feature selection, also called variable selection, is the process (usually automated) of sorting through variables to retain variables that are likely...

Comments Off on Week #8 – Feature Selection

Week #7 – Bagging

In predictive modeling, bagging is an ensemble method that uses bootstrap replicates of the original training data to fit predictive models.

Comments Off on Week #7 – Bagging

Week #6 – Boosting

In predictive modeling, boosting is an iterative ensemble method that starts out by applying a classification algorithm and generating classifications.

Comments Off on Week #6 – Boosting

Week #5 – Ensemble Methods

In predictive modeling, ensemble methods refer to the practice of taking multiple models and averaging their predictions.

Comments Off on Week #5 – Ensemble Methods

Dialects

When talking to several people, do you address them as "you guys"? "Y'all"? Just "you"? And is the carbonated soft drink "soda" or "pop?" Maps based on survey responses to questions like this were published in the Harvard Dialect Survey in 2003. Josh Katz took…

Comments Off on Dialects

Needle in a Haystack

What's the probability that the NSA examined the metadata for your phone number in 2013? According to John Inglis, Deputy Director at the NSA, it's about 0.00001, or 1 in 100,000. A surprisingly small number, given what we've all been reading in the media about…

Comments Off on Needle in a Haystack

Week #3 – Exact Tests

Exact tests are hypothesis tests that are guaranteed to produce Type-I error at or below the nominal alpha level of the test when conducted on samples drawn from a null model.

Comments Off on Week #3 – Exact Tests

Week #2 – Error

In statistical models, error or residual is the deviation of the estimated quantity from its true value: the greater the deviation, the greater the error.

Comments Off on Week #2 – Error

Week #1 – Endogenous variable

Endogenous variables in causal modeling are the variables with causal links (arrows) leading to them from other variables in the model.

Comments Off on Week #1 – Endogenous variable

Week #53 – Effect size

In a study or experiment with two groups (usually control and treatment), the investigator typically has in mind the magnitude of the difference between the two groups that he or she wants to be able to detect in a hypothesis test.

Comments Off on Week #53 – Effect size

Week #51 – Type 1 error

In a test of significance (also called a hypothesis test), Type I error is the error of rejecting the null hypothesis when it is true -- of saying an effect or event is statistically significant when it is not.

Comments Off on Week #51 – Type 1 error

Personality regions

There are Red States and Blue States. The three blue states of the Pacific coast constitute the Left Coast. For Colin Woodward, Yankeedom comprises both New England and the Great Lakes. If you're into accessories, there's the Bible Belt, the Rust Belt, and the Stroke…

Comments Off on Personality regions

Week #49 – Data partitioning

Data partitioning in data mining is the division of the whole data available into two or three non-overlapping sets: the training set (used to fit the model), the validation set (used to compared models), and the test set (used to predict performance on new data).

Comments Off on Week #49 – Data partitioning

Week #46 – Cluster Analysis

In multivariate analysis, cluster analysis refers to methods used to divide up objects into similar groups, or, more precisely, groups whose members are all close to one another on various dimensions being measured.

Comments Off on Week #46 – Cluster Analysis

Week #45 – Construct validity

In psychology, a construct is a phenomenon or a variable in a model that is not directly observable or measurable  - intelligence is a classic example.

Comments Off on Week #45 – Construct validity

Terrorist Clusters

The "righteous vengeance gun attack" is just one of 10 types of terrorism identified by Chenoweth and Lowham via statistical clustering techniques. Another cluster is "bombings of a public population where a liberation group takes responsibility." You can read about the 10 clusters, and the…

Comments Off on Terrorist Clusters

Statistics.com Partners With CrowdANALYTIX to Offer New Online Course With Crowdsource Contest As Project

Crowdsourcing, using the power of the crowd to solve problems, has been used for many functions and tasks, including predictive modeling (like the 2009 Netflix Contest). Typically, problems are broadcast to an unknown group of statistical modelers on the Internet, and solutions are sought. Every…

Comments Off on Statistics.com Partners With CrowdANALYTIX to Offer New Online Course With Crowdsource Contest As Project

Week #42 – Cross-sectional data

Cross-sectional data refer to observations of many different individuals (subjects, objects) at a given time, each observation belonging to a different individual.  A simple...

Comments Off on Week #42 – Cross-sectional data

Week #41 – Tokenization

Tokenization is an initial step in natural language processing.  It involves breaking down a text into a series of basic units, typically words. For example...

Comments Off on Week #41 – Tokenization

Week #40 – Natural Language

A natural language is what most people outside the field of computer science think of as just a language (Spanish, English, etc.). The term...

Comments Off on Week #40 – Natural Language

Week # 39 – White Hat Bias

White Hat Bias is bias leading to distortion in, or selective presentation of, data that is considered by investigators or reviewers to be acceptable because it is in the service of righteous goals.

Comments Off on Week # 39 – White Hat Bias

Week #35 – Continuous vs. Discrete Distributions

A discrete distribution is one in which the data can only take on certain values, for example integers.  A continuous distribution is one in which data can take on any value within a specified range (which may be infinite).

Comments Off on Week #35 – Continuous vs. Discrete Distributions

Week # 34 – Central Limit Theorem

The central limit theorem states that the sampling distribution of the mean approaches Normality as the sample size increases, regardless of the probability distribution of the population from which the sample is drawn.

Comments Off on Week # 34 – Central Limit Theorem

Week #32 – CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a method for building classification trees and regression trees from a training sample comprising already-classified objects.

Comments Off on Week #32 – CHAID

Week # 31 – Census

In a census survey , all units from the population of interest are analyzed. A related concept is the sample survey, in which only a subset of the population is taken.

Comments Off on Week # 31 – Census

Week #30 – Discriminant analysis

Discriminant analysis is a method of distinguishing between classes of objects.  The objects are typically represented as rows in a matrix.

Comments Off on Week #30 – Discriminant analysis

Week # 29 – Training data

Also called the training sample, training set, calibration sample.  The context is predictive modeling (also called supervised data mining) -  where you have data with multiple predictor variables and a single known outcome or target variable.

Comments Off on Week # 29 – Training data

Mutual Attraction

Mutual attraction is a dominant force in the universe. Gravity binds the moon to the earth, the earth to the sun, the sun to the galaxy, and one galaxy to another. And yet the universe is expanding; the result is a larger universe comprised of…

Comments Off on Mutual Attraction

Week #28 – Bias

A general statistical term meaning a systematic (not random) deviation of an estimate from the true value.

Comments Off on Week #28 – Bias

Week #17 – Bootstrapping

Bootstrapping is sampling with replacement from observed data to estimate the variability in a statistic of interest. See also permutation tests, a related form of resampling. A common application

Comments Off on Week #17 – Bootstrapping

Week #16 – Binomial Distribution

A Binomial distribution is used to describe an experiment, event, or process for which the probability of success is the same for each trial and each trial has only two possible outcomes.

Comments Off on Week #16 – Binomial Distribution

Week #15 – Uplift or Persuasion Modeling

A combination of treatment comparisons (e.g. send a sales solicitation, or send nothing) and predictive modeling to determine which cases or subjects respond (e.g. purchase or not) to which treatments.

Comments Off on Week #15 – Uplift or Persuasion Modeling

Week #13 – Multiplicity issues

Multiplicity issues arise in a number of contexts, but they generally boil down to the same thing:  repeated looks at a data set in different ways, until something "statistically significant" emerges.

Comments Off on Week #13 – Multiplicity issues

Week #12 – Support vector machines

Support vector machines are used in data mining (predictive modeling, to be specific) for classification of records, by learning from training data.

Comments Off on Week #12 – Support vector machines

Week #11 – Attribute

In data analysis or data mining, an attribute is a characteristic or feature that is measured for each observation (record) and can vary from one observation to another.  It might

Comments Off on Week #11 – Attribute

Week #10 – Negative Binomial

The negative binomial distribution is the probability distribution of the number of Bernoulli (yes/no) trials required to obtain r successes.

Comments Off on Week #10 – Negative Binomial

Week #9 – Random Walk

A random walk is a process of random steps, motions, or transitions.  It might be in one dimension (movement along a line), in two dimensions (movements in a plane), or in three dimensions or more.

Comments Off on Week #9 – Random Walk

Week #5 – Differencing of a Time Series

in discrete time is the transformation of the series to a new time series where the values are the differences between consecutive values of the original series.

Comments Off on Week #5 – Differencing of a Time Series

Week #1 – Data Partitioning

In predictive modeling, data partitioning is the division of the data available for analysis into two or three non-overlapping

Comments Off on Week #1 – Data Partitioning